Mobile Connectivity Saving Lives

Tender Law: What You Need to Know

Eco-Charettes: Sustainable Design in Action

2006/2007 Project Highlights
TERRAIN STABILITY MAPPING

With Forest Investment Account (FIA) funding, Pulp & Paper Science (Pulp) (Kimberley Plant) was retained by Tolko Industries, ChetwyndRegion Woodlands in 2006 to conduct a terrain stability mapping project of 28,000 ha of the headwaters of the R hydraulic river near Vernon, BC. The objective of the work was to document the surface geology, active geomorphic processes, and terrain stability to support forest development planning. This information is paramount in developing strategies to minimize risk to watershed values associated with future road construction and harvesting. While consistent with relevant provincial standards, it fundamentally approaches the project was adopted, which included aerial photo interpretation, helicopter reconnaissance, and detailed ground inspections.

SAWISH UNDERWATER HARVESTER

Triton Logging's Sawfish Underwater Harvester was designed to take advantage of the 300 million preserved trees standing in streams worldwide. Operating remotely and using high-powered underwater systems, the Sawfish can cut and surface 140,000 trees per day. The team at Triton, led by Norman Kenney, Phil and Stan Wrona, Pilling, designed and built the second generation Sawfish with increased power, maneuverability, and loading capacity. Used throughout the summer of 2006 at Otta Leda Lake and near Powell River, the Sawfish is the world's only deepwater harvesting machine, capable of reaching lakes. In the absence of regulators, under contract to resource-managers and in partnership with local governments, Sawfish will also be deployed to international waters in 2007 to recover high-value, environmentally friendly timber to satisfy the global demand for certified wood products.

Professionals Involved: Stan Wrona, Pilling, Jason Williams, Pilling, Scott Bonstad, EIT, Norman Kenney, Pilling.

TEXTILE REINFORCED STREAM CROSSING

Pipe culverts on streams typically interrupt the natural floodplain transport within stream channel. Weyerhaeuser (Weyerhaeuser) was able to remove one of these barriers to fish passage without real estate on Wabasso Creek. The replacement structure consisted of a 4.3 m span, 15.8 m long reinforced concrete arch. One of the benefits of the reinforced arch is that the wind and force used in the construction of the structures, does not use live vegetation, for a conventional soil-stabilized arch.